38 resultados para Molecular Analysis

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary non-polyposis colorectal carcinoma (HNPCC; Lynch syndrome) is among the most common hereditary cancers in man and a model of cancers arising through deficient DNA mismatch repair (MMR). It is inherited in a dominant manner with predisposing germline mutations in the MMR genes, mainly MLH1, MSH2, MSH6 and PMS2. Both copies of the MMR gene need to be inactivated for cancer development. Since Lynch syndrome family members are born with one defective copy of one of the MMR genes in their germline, they only need to acquire a so called second hit to inactivate the MMR gene. Hence, they usually develop cancer at an early age. MMR gene inactivation leads to accumulation of mutations particularly in short repeat tracts, known as microsatellites, causing microsatellite instability (MSI). MSI is the hallmark of Lynch syndrome tumors, but is present in approximately 15% of sporadic tumors as well. There are several possible mechanisms of somatic inactivation (i.e. the second hit ) of MMR genes, for instance deletion of the wild-type copy, leading to loss of heterozygosity (LOH), methylation of promoter regions necessary for gene transcription, or mitotic recombination or gene conversion. In the Lynch syndrome tumors carrying germline mutations in the MMR gene, LOH was found to be the most frequent mechanism of somatic inactivation in the present study. We also studied MLH1/MSH2 deletion carriers and found that somatic mutations identical to the ones in the germline occurred frequently in colorectal cancers and were also present in extracolonic Lynch syndrome-associated tumors. Chromosome-specific marker analysis implied that gene conversion, rather than mitotic recombination or deletion of the respective gene locus accounted for wild-type inactivation. Lynch syndrome patients are predisposed to certain types of cancers, the most common ones being colorectal, endometrial and gastric cancer. Gastric cancer and uroepithelial tumors of bladder and ureter were observed to be true Lynch syndrome tumors with MMR deficiency as the driving force of tumorigenesis. Brain tumors and kidney carcinoma, on the other hand, were mostly MSS, implying the possibility of alternative routes of tumor development. These results present possible implications in clinical cancer surveillance. In about one-third of families suspected of Lynch syndrome, mutations in MMR genes are not found, and we therefore looked for alternative mechanisms of predisposition. According to our results, large genomic deletions, mainly in MSH2, and germline epimutations in MLH1, together explain a significant fraction of point mutation-negative families suspected of Lynch syndrome and are associated with characteristic clinical and family features. Our findings have important implications in the diagnosis and management of Lynch syndrome families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is one of the most frequent malignancies in Western countries. Inherited factors have been suggested to be involved in 35% of CRCs. The hereditary CRC syndromes explain only ~6% of all CRCs, indicating that a large proportion of the inherited susceptibility is still unexplained. Much of the remaining genetic predisposition for CRC is probably due to undiscovered low-penetrance variations. This study was conducted to identify germline and somatic changes that contribute to CRC predisposition and tumorigenesis. MLH1 and MSH2, that underlie Hereditary non-polyposis colorectal cancer (HNPCC) are considered to be tumor suppressor genes; the first hit is inherited in the germline and somatic inactivation of the wild type allele is required for tumor initiation. In a recent study, frequent loss of the mutant allele in HNPCC tumors was detected and a new model, arguing against the two-hit hypothesis, was proposed for somatic HNPCC tumorigenesis. We tested this hypothesis by conducting LOH analysis on 25 colorectal HNPCC tumors with a known germline mutation in the MLH1 or MSH2 genes. LOH was detected in 56% of the tumors. All the losses targeted the wild type allele supporting the classical two-hit model for HNPCC tumorigenesis. The variants 3020insC, R702W and G908R in NOD2 predispose to Crohn s disease. Contribution of NOD2 to CRC predisposition has been examined in several case-control series, with conflicting results. We have previously shown that 3020insC does not predispose to CRC in Finnish CRC patients. To expand our previous study the variants R702W and G908R were genotyped in a population-based series of 1042 Finnish CRC patients and 508 healthy controls. Association analyses did not show significant evidence for association of the variants with CRC. Single nucleotide polymorphism (SNP) rs6983267 at chromosome 8q24 was the first CRC susceptibility variant identified through genome-wide association studies. To characterize the role of rs6983267 in CRC predisposition in the Finnish population, we genotyped the SNP in the case-control material of 1042 cases and 1012 controls and showed that G allele of rs6983267 is associated with the increased risk of CRC (OR 1.22; P=0.0018). Examination of allelic imbalance in the tumors heterozygous for rs6983267 revealed that copy number increase affected 22% of the tumors and interestingly, it favored the G allele. By utilizing a computer algorithm, Enhancer Element Locator (EEL), an evolutionary conserved regulatory motif containing rs6983267 was identified. The SNP affected the binding site of TCF4, a transcription factor that mediates Wnt signaling in cells, and has proven to be crucial in colorectal neoplasia. The preferential binding of TCF4 to the risk allele G was showed in vitro and in vivo. The element drove lacZ marker gene expression in mouse embryos in a pattern that is consistent with genes regulated by the Wnt signaling pathway. These results suggest that rs6983267 at 8q24 exerts its effect in CRC predisposition by regulating gene expression. The most obvious target gene for the enhancer element is MYC, residing ~335 kb downstream, however further studies are required to establish the transcriptional target(s) of the predicted enhancer element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a hereditary tumour predisposition syndrome. Its phenotype includes benign cutaneous and uterine leiomyomas (CLM, ULM) with high penetrance and rarer renal cell cancer (RCC), most commonly of papillary type 2 subtype. Over 130 HLRCC families have been identified world-wide but the RCC phenotype seems to concentrate in families from Finland and North America for unknown reasons. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. FH encodes the enzyme fumarase from mitochondrial citric acid cycle. Fumarase enzyme activity or type or site of the FH mutation are unassociated with disease phenotype. The strongest evidence for tumourigenesis mechanism in HLRCC supports a hypoxia inducible factor driven process called pseudohypoxia resulting from accumulation of the fumarase substrate fumarate. In this study, to assess the importance of gene- or exon-level deletions or amplifications of FH in patients with HLRCC-associated phenotypes, multiplex ligation-dependent probe amplification (MLPA) method was used. One novel FH mutation, deletion of exon 1, was found in a Swedish male patient with an evident HLRCC phenotype with CLM, RCC, and a family history of ULM and RCC. Six other patients with CLM and 12 patients with only RCC or uterine leiomyosarcoma (ULMS) remained FH mutation-negative. These results suggest that copy number aberrations of FH or its exons are an infrequent cause of HLRCC and that only co-occurrence of benign tumour types justifies FH-mutation screening in RCC or ULMS patients. Determination of the genomic profile of 11 HLRCC-associated RCCs from Finnish patients was performed by array comparative genomic hybridization. The most common copy number aberrations were gains of 2, 7, and 17 and losses of 13q12.3-q21.1, 14, 18, and X. When compared to aberrations of sporadic papillary RCCs, HLRCC-associated RCCs harboured a distinct DNA copy number profile and lacked many of the changes characterizing the sporadic RCCs. The findings suggest a divergent molecular pathway for tumourigenesis of papillary RCCs in HLRCC. In order to find a genetic modifier of RCC risk in HLRCC, genome-wide linkage and identical by descent (IBD) analysis studies were performed in Finnish HLRCC families with microsatellite marker mapping and SNP-array platforms. The linkage analysis identified only one locus of interest, the FH gene locus in 1q43, but no mutations were found in the genes of the region. IBD analysis yielded no convincing haplotypes shared by RCC patients. Although these results do not exclude the existence of a genetic modifier for RCC risk in HLRCC, they emphasize the role of FH mutations in the malignant tumourigenesis of HLRCC. To study the benign tumours in HLRCC, genome-wide DNA copy number and gene expression profiles of sporadic and HLRCC ULMs were defined with modern SNP- and gene-expression array platforms. The gene expression array suggests novel genes involved in FH-deficient ULM tumourigenesis and novel genes with putative roles in propagation of sporadic ULM. Both the gene expression and copy number profiles of HLRCC ULMs differed from those of sporadic ULMs indicating distinct molecular basis of the FH-deficient HLRCC tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Ewing sarcoma family of tumors (ESFT) are rare but highly malignant neoplasms that occur mainly in bone or but also in soft tissue. ESFT affects patients typically in their second decade of life, whereby children and adolescents bear the heaviest incidence burden. Despite recent advances in the clinical management of ESFT patients, their prognosis and survival are still disappointingly poor, especially in cases with metastasis. No targeted therapy for ESFT patients is currently available. Moreover, based merely on current clinical and biological characteristics, accurate classification of ESFT patients often fails at the time of diagnosis. Therefore, there is a constant need for novel molecular biomarkers to be applied in tandem with conventional parameters to further intensify ESFT risk-stratification and treatment selection, and ultimately to develop novel targeted therapies. In this context, a greater understanding of the genetics and immune characteristics of ESFT is needed. Aims: This study sought to open novel insights into gene copy number changes and gene expression in ESFT and, further, to enlighten the role of inflammation in ESFT. For this purpose, microarrays were used to provide gene-level information on a genomewide scale. In addition, this study focused on screening of 9p21.3 deletion sizes and frequencies in ESFT and, in another pediatric cancer, acute lymphocytic leukemia (ALL), in order to define more exact criteria for highrisk patient selection and to provide data for developing a more reliable diagnostic method to detect CDKN2A deletions. Results: In study I, 20 novel ESFT-associated suppressor genes and oncogenes were pinpointed using combined array CGH and expression analysis. In addition, interesting chromosomal rearrangements were identified: (1) Duplication of derivative chromosome der(22)(11;22) was detected in three ESFT patients. This duplication included the EWSR1-FLI1 fusion gene leading to increase in its copy number; (2) Cryptic amplifications on chromosomes 20 and 22 were detected, suggesting a novel translocation between chromosomes 20 and 22, which most probably produces a fusion between EWSR1 and NFATC2. In study II, bioinformatic analysis of ESFT expression profiles showed that inflammatory gene activation is detectable in ESFT patient samples and that the activation is characterized by macrophage gene expression. Most interestingly, ESFT patient samples were shown to express certain inflammatory genes that were prognostically significant. High local expression of C5 and JAK1 at the tumor site was shown to associate with favorable clinical outcome, whereas high local expression of IL8 was shown to be detrimental. Studies III and IV showed that the smallest overlapping region of deletion in 9p21.3 includes CDKN2A in all cases and that the length of this region is 12.2 kb in both Ewing sarcoma and ALL. Furthermore, our results showed that the most widely used commercial CDKN2A FISH probe creates false negative results in the narrowest microdeletion cases (<190 kb). Therefore, more accurate methods should be developed for the detection of deletions in the CDKN2A locus. Conclusions: This study provides novel insights into the genetic changes involved in the biology of ESFT, in the interaction between ESFT cells and immune system, and in the inactivation of CDKN2A. Novel ESFT biomarker genes identified in this study serve as a useful resource for future studies and in developing novel therapeutic strategies to improve the survival of patients with ESFT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant mesothelioma (MM) is a rare, usually incurable, disease mainly caused by former exposure to asbestos. Even though MM has a strong etiological link, genetic factors may play a role, since not all cases can be linked to former asbestos exposure. This thesis focuses on lung diseases, mainly malignant mesothelioma (MM), and idiopathic pulmonary fibrosis (IPF), which resembles asbestosis. The specific asbestos-related pathways associated with malignant as well as non-malignant lung diseases, still need to be clarified. Since most patients diagnosed with MM or asbestosis/fibrosis have a dismal prognosis and few therapeutic options are available, early diagnosis and better understanding of the disease pathogenesis are of the utmost importance. The first objective of this thesis was to identify asbestos specific differentially expressed genes. This was approached by using high-resolution gene expression arrays, and three different human lung cell lines, as well as with three different bioinformatics approaches. Since the first study aimed to elucidate potential early changes, the second study was used to screen DNA copy number changes in MM tumour samples. This was performed using genome wide microarrays for identification of DNA copy number changes characterstic for MM. Study III focused on the role of gremlin in the regulation of bone morphogenetic protein (BMPs) in IPF. Further studies were conducted in asbestos-exposed cell cultures as well as in an asbestos-induced mouse model. Furthermore, GATA-6 was studied in MM and metastatic pleural adenocarcinoma. The GATA transcription factors are important during embryonic development, but their role in cancer is still unclear. GATA-6 is a co-factor/target of thyroid transcription factor 1 (TTF-1), which is used in differential diagnostics of pleural MM and adenocarcinoma. Bioinformatics probed the genes and biological processes ordered in terms of significance, clusters, and highly enriched chromosomal regions. The study revealed several already identified targets, produced new ideas about genes which are central for asbestos exposure, as well as provided supplementary data for researchers to check their own novel findings or ideas. The analysis revealed DNA copy number changes characteristic for MM tumors. The most common regions of loss were detected in 1p, 3p, 6q, 9p, 13, 14, and 22, and gains at 17q. The histological features in asbestosis and IPF are very similar, wherefore IPF can be studied in asbestos models. The BMP antagonist gremlin was up-regulated by asbestos exposure in human epithelial cell lines, which was also observed in Study I. The transforming growth factor (TGF) -β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. BMP-7 signaling was down-regulated in response to up-regulation of gremlin, and restoration of BMP-7 signaling prevented progression of fibrosis in mice. Therefore, the study suggests that the restoration of BMP-7 signaling in fibrotic lung could potentially aid in the treatment of IPF patients. Study IV revealed that GATA-6 was strongly expressed in the majority of the MM cases, and correlated statistically significant with longer survival in subgroups of MM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue is a mosquito-borne viral disease caused by the four dengue virus serotypes (DENV-1-4) and is currently considered as the most important arthropod-borne viral disease in the world. Nearly half of the human population lives in risk areas, and 50-100 million infections occur yearly according to World Health Organization. The disease can vary from a mild febrile disease to severe haemorrhagic fever and shock. A secondary infection with heterologous serotype increases the risk for severe disease outcome. During the last three decades the impact of dengue has dramatically increased in the endemic areas including the tropics and subtropics of the world. The current situation with massive epidemics of severe disease forms has been associated with socio-ecological changes that have increased the transmission and enabled the co-circulation of different serotypes. Consequently, an increase of dengue has also been observed in travelers visiting these areas. Currently approximately 30 cases are diagnosed yearly in Finnish travelers. In travelers dengue is rarely a life-threatening disease, however in the current study, a fatality was documented in a young Finnish patient who experienced a prolonged primary dengue infection. To improve particularly early laboratory diagnostics, a novel real-time RT-PCR method was developed for the detection of DENV-1-4 RNA based on TaqMan chemistry. The method was shown to be sensitive and specific for detecting DENV RNA and suitable for diagnostic use. The newly developed real-time RT-PCR was compared to other available early diagnostic methods including IgM and NS1 antigen detection using a panel of selected patient samples. The results suggest that the best diagnostic rates are achieved by a combination of IgM with RNA or NS1 detection. The dengue virus strains studied here included the first DENV strains isolated from serum samples of Finnish travelers collected in 2000-2005. The results of sequence analysis demonstrated that the 11 isolates included all four DENV serotypes and presented a global sample of DENV strains from different geographical areas including Asia, Africa and South America. In the present study sequence analysis was also carried out for a collection of 23 novel DENV-2 isolates from Venezuelan patients collected in 1999-2005. The Venezuelan DENV-2 exclusively represented the American-Asian genotype, suggesting that no foreign DENV-2 lineages have recently been introduced to the country. The results also suggest that the DENV-2 viruses detected earlier from Venezuela have been maintained in the area where they have evolved into several lineages. This is in contrast to the pattern observed in some other dengue endemic areas, where introductions of novel virus types and lineages are frequently detected.